THE SUN STREET JOURNAL.

‘Drastic Hike in Electricity Cost’ – Florida Residents Warned

fpl rate increase
The Public Service Commission is set to approve a hike in electricity cost for Florida Power and Light customers that could reach nearly 20% over four years. The increase would affect more than 11 million people served by FP&L, with the company projecting an additional $150 million per year on its own finances as it seeks approval from state utility regulators this week at hearings across 12 counties.

Request for increase in electricity cost

Last March, FPL filed a proposal with the Florida Public Service Commission to increase electricity cost by approximately 20% over four years. In late October they approved an agreement that will allow them to raise your monthly bill up $215 each year until 2025. This rate increase will have a dramatic effect on over 11 million Floridians served by FP&L.

According to News4Jax the utilities intention is to improve the infrastructure and grid resiliency.

“The plan will allow us to continue to make proven investments in infrastructure, clean energy and technology that benefit our customers and a growing state,” said FP&L CEO Eric Silagy.

The people fighting the rate hike criticized FP&L for trying to raise rates while more than 650,000 of its customers are still struggling.

“What’s reliability if you can’t afford to keep the lights on due to a high bill?” said Jordan Luebkemann with Florida Rising.

Background

The utility companies in the United States are regulated monopolies, which means they have a captive customer base and can earn guaranteed profits. The group of commissioners who monitor these activities ( nominated by state legislatures) sets regulations for services provided as well
monitors how much money is being made off each person that relies on this company’s product or service

Florida Power & Light is the largest monopoly in the state

With their monopoly status and $2.65 billion net earnings in 2020, FPL’s president received an 8x compensation package from residential customers who make up the largest source of company revenue since 2016–55%.

Fluctuating electricity prices have been difficult for Floridians to afford especially with many already struggling to afford many other monthly bills.

Energy insecurity is a major issue for communities of color and low wealth. These groups often have to make difficult choices between paying their power bill or buying food, medications etc., which can lead them into even more hardships like inadequate housing and trading off between other expenses like medications, childcare, or food.

When times are tough, we have to take care of our people.

A hike in electricity prices is never an easy thing for anyone but we need to care for our people by keeping FPL rates low enough allowing everyone with access to necessities like electricity. 

As advocates work to protect communities from disconnection, they are frustrated by FPL’s lack of commitment. After three short months with no progress on behalf of its customers who finds themselves behind on their monthly bills due to unpaid electricity debts as a result of the rising electricity cost—FPL resumes shutoffs once more! There is no industry standard or government mandate requiring utilities release public information about these cancellations; it’s reported inconsistently and advocate often have pieces data only including fractional populations impacted high burden energy services essential maintain security well-being.

The environmental injustices that affect minority communities and low-income households are often not addressed by traditional methods. The Partnership for Inclusive Energy Security (PIES), in partnership with grassroots organizations across the country, has been working to bring these issues center stage so they can be remedied through sustainable changes within our energy system itself.

This means prioritizing renewable resources like wind or solar power while eliminating fossil fuel investments altogether; it’s something we need now more than ever before because climate disruptions will only get worse without intervention!

fpl disconnections
electricity cost

Photo caption: In a show of solidarity, community groups and Miami residents have come together to peacefully demonstrate outside FPL’s offices. The group planted 250 flags—one for each lost electric customer–to remind the power company that its moratorium on shut-offs is not acceptable anymore!

FPL is not the only bad actor

Nine out of ten small businesses have been forced into insolvency due these policies.
The utility companies across this country recently wielded their political power by securing beneficial tax code change which will allow them relief from paying off billions worth debt while giving little back to the community.

The economic stimulus bill was supposed to support those struggling amidst the COVID-19 pandemic. With money utilities spent on executive pay and dividends, many could have bailouts their customers more than 500 times–but none of that utility dollars were used to relieve households’ or small businesses’ debts!

Proposed Rate Hike by FPL

The utility company is required to “ask” regulators for their approval over a series of regulatory proceedings called rate cases. Utilities have continuously increased electricity cost, revealing that this process is deeply flawed with abuse and capture by corporations who force households across the country into high expense due in part from an inefficient system which must be paid back through higher prices or taxes on consumers’ behalf.

FPL is seeking approval from the Florida Public Service Commission to increase electricity base rates by approximately 20% over four years. The company has submitted a proposal that will be heavily fought out in March 2021, when hearings begin on this case and others like it across state lines for months at time before they reach overlapping conclusions (or not).

FPL’s defense of proposals to invest in new fossil fuel infrastructure by blaming growing demand for electricity and oversimplifying funds allocated towards outright unjust clean energy programs is not convincing the public. In fact, FPL consistently brushes off responsibility when it comes down systemic issues with our country’s current energy system; instead placing all blame on ratepayers who will be harmed as this case progresses!

FPL’s claim that they are “proud to keep typical residential electricity cost well below the national average through 2025″ is not true. According to Catalyst Miami this statement relies on an unrealistic and false assumption of 1,000 kWh per month usage by every utility company client-a statistic which applies only for FPL’s performance when compared with other large investor owned utilities like Duke Energy Corporation (Duke).

In short: “FPL doesn’t even come close.”

How You Can Fight Rising Electricity Cost

According to energy.gov homeowners can combat the hike in electricity cost by becoming independent from the proposed FP&L rate hikes and go solar. Thanks to the Solar Energy Technology Office’s investments, residential solar is much more affordable than electricity. 

“Unfortunately, many homeowners don’t know enough about solar and tend to shut it down before knowing anything about it actually. They hear from someone that it cost a lot of money and never really give it any thought.” – Florida resident Raquel Silva.

Have you ever played the game as a kid where you line up several kids side by side, say 5 or more, and have the first one whisper a secret in the kid next to them’s ear and ask them to pass it on?
 
The secret when it is told by the last kid at the end of the line never resembles what was told by the first kid.

Learn more about solar and its benefits

Researchers are urging homeowners to treat solar with an open mindset and to truly give it a chance before shutting down something that they know little about. There is a reason that Florida’s largest utility company is against residential rooftop solar.

Most homeowners that go solar in fact save from day 1 on their electric bill and did not have to dish out any upfront money.

Want to learn more about the benefits of solar for you and your family?

SHARE THIS STORY:

Leave a Comment

Your email address will not be published. Required fields are marked *

Let's go solar!

Ready to discover how much solar can save you?

The sun is shining, and we're ready to help you harness its power. It's time you discover how much solar can save you! Get a free quote today and start saving money tomorrow. Click here to get started.

See Savings

You might also enjoy

solar power and the grid
Florida’s Largest Electric Company FPL Is Against Solar Power

“Instead of fighting climate change, some companies are trying to shut down rooftop solar energy. This is exactly what Florida Power & Light does because they don’t want their business model threatened by new technologies that might end up reducing electricity demand in America’s oldest markets- where most power plants operate today”

Find out what solar cost in your area

Zero Upfront Cost
Guaranteed
small_c_popup.png

Let's have a chat

small_c_popup.png

On the way

Where should we send?

Enphase Energy

An American NASDAQ-listed energy technology company headquartered in Fremont, California. Enphase designs and manufactures software-driven home energy solutions that span solar generation, home energy storage and web-based monitoring and control. Enphase has shipped about thirty million solar microinverters, primarily into the residential and commercial markets in North America. Microinverters convert the direct current power from the solar panel (DC) directly into grid-compatible alternating current (AC) for use or export. Enphase was the first company to successfully commercialize the microinverter on a wide scale, and remains the market leader in their production.

History

Enphase Energy pioneered the concept of a microinverter. The basic idea behind a microinverter is to convert, manage and monitor energy per panel, rather than the entire array of panels. This reduces the size of the inverter that can be placed on the back of the panel, producing an “AC panel”. Such a system can be connected directly to the grid, or to each other to produce larger arrays. This contrasts with the traditional central inverter approach, where many panels are connected together in series on the DC-side and then run en-masse to a single larger inverter.

In the aftermath of the 2001 Telecoms crash, Martin Fornage of Cerent Corporation was looking for new projects. When he saw the low performance of the string inverter for the solar array on his ranch, he partnered with another Cerent engineer, Raghu Belur, and they formed PVI Solutions. The two tapped Paul Nahi to be CEO at the end of 2006, and Fornage, Belur and Nahi formed Enphase Energy, Inc. in early 2007. Thereafter, the first prototype microinverter was developed. With approximately $6 million in private equity by 2008, Enphase released its first product, the M175, to moderate success. Their 2nd generation product, 2009’s M190, was far more successful, with sales of about 400,000 units in 2009 and early 2010. Enphase quickly grew to 13% market share for residential systems by mid-2010, aiming for 20% by year-end.

They shipped their 500,000th inverter in early 2011, and their one millionth in September of the same year. The 3rd generation M215 was released in the summer of 2011, and had sold over a million of all models in 2011, bringing their installed base to 1.55 million inverters and 34.4% market share. A 4th generation, the M250, was released in 2013.

As of 2012, their inverters captured 53.5% market share for residential installations in the US, which represents 72% of the entire world micro-inverter market. This makes them the sixth largest inverter manufacturer, of any kind, worldwide.

In 2012 and 2013, Enphase experienced increasing pricing pressure due to rapidly falling prices in the inverter market. Market leaders faced market share erosion in the face of newer companies, most of them from the far east. However, in 2019, Enphase remains the leading supplier of solar microinverters globally.

Products

All Enphase microinverters are completely self contained power converters. In the case of a rooftop PV inverter, the unit will convert DC from a single solar panel into grid-compliant AC power, following the maximum power point of the panel. Since the “S” series microinverters (e.g. S280) all Enphase microinverters have been both Advanced Grid Function and Bidirectional power capable. This allows a microinverter to produce power in the DC-AC direction, for solar applications, or in the DC-AC and AC-DC directions, for battery use. The microinverter(s) in the Enphase battery products are exactly the same units as installed on the roof, with only software settings changed.

Legacy Products

The M175 was their first product, released in 2008. It was designed to output 175 Watts of AC power, but is capable of up to 5% over that. The M175 was packaged in a relatively large cast aluminum box, similar to the boxes used on cable tv amplifiers seen on telephone poles. Wiring was passed through the case using compression fittings and the inverters connected to each other using a twist-lock connection. A limited number of M210 models, based on the same generation system, were also available for a limited time.

Due to a high level of failures the M175 was recalled and replaced by the M190 in 2009. The M190 offers a slightly higher power rating of 190 Watts (peaking to 199). The system was packaged in a much smaller case, this time filled with epoxy potting material to handle heat dissipation, and built-in cable connections replacing the earlier compression fittings. The system was otherwise similar, using the same connectors and cabling as the M175, and the two designs could be mixed in a string. Like its predecessor the M175 the M190 has also been plagued by a high failure rate.

Around the same time the company also released the D380, which was essentially two M190’s in a single larger case. For small inverters like the M190, the case and its assembly represented a significant portion of the total cost of production, so by placing two in a single box that cost is spread out. The D380 also introduced a new inter-inverter cabling system based on a “drop cable” system. This placed a single connector on a short cable on the inverter, and used a separate cable with either one or three connectors on it. Arrays were constructed by linking together up to three D380s with a single drop cable, and then connecting them to other drop cables using larger twist-fit connectors.

In 2011 the entire lineup was replaced with the 3rd generation M215, combining the features of the M190 and D380 while improving reliability. Like the M190, the M215 was a single inverter, now in a much smaller box. Like the D380, the M215 used a trunk cabling system with short connector cables on the inverters. However, instead of one or three-drop cable, the M215’s Engage system, used a long roll of cables with connectors spliced into it. The installer cuts the Engage cable to the required length, and then caps the open ends that result.

In 2013 the M250 was released, offering a new grounding system (Integrated Ground – IG) that eliminates the otherwise NEC – required external grounding conductor, increased reliability, and increased efficiency (96.5%), along with a rating bump to 250W. Whereas previous models were all named after the maximum power rating, the M250 actually refers to its peak power. Using the same convention the M190 would be called the M199. The M250 is otherwise identical to the earlier M215 (which also was upgraded with IG) and compatible with the same Engage cabling system.

All Enphase models use power line communications to pass monitoring data between the inverters and the Envoy communications gateway. The Envoy stores daily performance data for up to a year, and, when available, allows Enphase’s Enlighten web service to download data approximately every 15 minutes. Customers and installers can review the data on the Enlighten web site.

Current Products

In 2015 the company launched its fifth generation of products. The S230 and S280 microinverters have the highest efficiency for module-level power electronics at 97%, offer advanced grid functionality like reactive power control, and comply with regulatory requirements like Electric Rule 21 in California and Rule 14H in Hawaii. The next-gen Envoy-S offers revenue-grade metering of solar production, consumption monitoring, and integrated Wi-Fi. The company also moved into home energy storage with its Storage System featuring an AC Battery, a modular, 1.2kWh lithium-iron phosphate offering aimed at residential users that is part of a Home Energy Solution. The Home Energy Solution launched in Australia in mid-2016.

2017 began the introduction of the new IQ architecture, which uses a new cabling system. Two conductors, down from four, are integrated and compliant with electrical codes due to the use of GFCI, no need for a neutral and no conductive materials in the enclosure. The initial products were the IQ6 and IQ6+, followed in 2018 by the IQ7. In 2019 the IQ8 series will enable continuous power production during grid outages during daytime without the need for batteries.

Q Cells

Hanwha Q Cells (commonly known as simply Q CELLS) is a major manufacturer of photovoltaic (PV) solar cells. The company is headquartered in Seoul, South Korea, after being founded in 1999 in Talheim, Germany, where the company still has its engineering offices. Q Cells now operates as a subsidiary of Hanwha Solutions, an energy and petrochemical company.

Q Cells has manufacturing facilities in China, Malaysia, South Korea, and the United States. The company was the sixth-largest producer of solar cells in 2019, with shipments totaling 7.3 gigawatts.

History

In 1999, Anton Milner, Reiner Lemoine, Holger Feist, and Paul Grunow established Q Cells in an area of Thalheim, a part of former East Germany that had seen 50,000 people lose their jobs after German reunification. On 23 July 2001, the company produced its first working polycrystalline solar cell on its new production line in Thalheim. Q Cells would grow to become one of the world’s largest solar cell manufacturers, employing Over 2,000 people and encouraging other companies to open facilities in the surrounding area, which would come to be known as “Solar Valley.”

The company went public on 5 October 5, 2005, listing on the Frankfurt Stock Exchange. High share prices during the initial public offering poured money into the company and made the founders wealthy. Lemoine died in 2006, and shortly thereafter, Fest and Grunow left the company to go back into research. Only Milner remained and served as the company’s CEO.

In 2005, Q-Cells established the CdTe PV manufacturer Calyxo. In November 2007, Q-Cells agreed a deal with Solar Fields, which intellectual property and assets were merged into Calyxo’s newly established subsidiary Calyxo USA. In 2011, Solar Fields took over Calyxo.

In 2008, Q-Cells acquired 17.9% stake in Renewable Energy Corporation. This stake was sold in 2009. At the same year, Q-Cells’ subsidiary Sontor merged with a thin-film company Solarfilm.

In June 2009, the company acquired Solibro, a joint venture it had established in 2006. Solibro manufactured thin-film solar cells based on copper-indium-gallium-diselenide. These modules were marketed until the sale of Solibro to Hanergy in 2012.

Q Cells was hit hard by the Great Recession in late 2008, with share prices slipping from over 80 euros to under 20. In response, the company laid off 500 employees. Milner resigned as CEO in early 2010, and by the end of the year, the company’s finances appeared to stabilize. Just a few months later, in 2011, the global solar cell market crashed, with production overcapacity driving prices extremely low. Q-Cells saw sales slide by around 1 billion euros, ran a loss of 846 million euros and on 3 April 2011, the company filed for bankruptcy.

In August 2012, the Hanwha Group, a large South Korean business conglomerate, agreed to acquire Q Cells, saying that it presented synergy opportunities. In 2010, Hanwha had purchased a 49.99% share in Chinese manufacturer Solarfun which had been renamed Hanwha SolarOne. SolarOne had been producing solar cells for Q Cells under contract.

hanwha q cells manufacturing facility
Q Cells manufacturing plant in Dalton, Georgia, United States

Due to high costs, production in Germany ceased in 2015, with Hanwha moving the work to its SolarOne facilities in China and newly opened manufacturing facilities in Malaysia and South Korea. In 2019, Q Cells opened another manufacturing facility in the United States.

In recent years, Hanwha has since worked to simplify the structure of units, merging SolarOne into Q Cells in December 2014, merging Q Cells and the company’s Advanced Materials (petrochemicals) group in 2018, Q Cells & Advanced Materials acquired a solar company operated by the Hanwha Chemicals group in 2019, and in 2020 Hanwha Q Cells & Advanced Materials merged with Hanwha Chemical to form the Hanwha Solutions group.

Operations

Q Cells develops and produces mono– and polycrystalline silicon photovoltaic cells and solar panels. It produces and installs PV systems for commercial, industrial, and residential applications and provides EPC services for large-scale solar power plants.

The company’s engineering offices are located at the original headquarters in Thalheim, German. In the United States that have a production facility in Dalton, Georgia in the United States.

LG Chem

Often referred to as LG Chemical, is the largest Korean chemical company and is headquartered in Seoul, South Korea. It was the 10th largest chemical company in the world by sales in 2017. It was first established as the Lucky Chemical Industrial Corporation, which manufactured cosmetics. It is now solely a business-to-business company (consumer products division was spun off into LG Household & Health Care).

The company has eight factories in South Korea and a network of 29 business locations in 15 countries. The Financial Times reported on April 2, 2017, that LG Chem would be expanding battery production in China. At the time, China accounted for one-third of the company’s total sales. In April 2019, LG Chem sued rival SK Innovation for allegedly stealing trade secrets for manufacturing electric vehicle batteries.

Business and product areas

LG Chem has three main business areas:

  • Basic materials and chemicals
  • Information technology and electronics materials
  • Energy solutions

Basic materials and chemicals

LG Chem is a supplier of petrochemicals ranging from basic distillates to specialty polymers. For example, it is a large producer of common plastics such as acrylonitrile butadiene styrene (ABS), styrene-acrylonitrile resin (SAN), and polyvinyl chloride (PVC). It also produces raw materials and liquids, including plasticizers, specialty additives, alcohols, polyolefins, acrylic acid, synthetic rubber, styrenics, performance polymers, engineering plastics, elastomers, conductive resins, and other chemicals.

Information technology and electronics materials

LG Chem supplies display and optical films, polarizers, printed circuit materials, and toners. It also supplies LCD polarizers, which are multi-layer sheets of film applied to the top and bottom surfaces of TFT-LCD panels to transmit the light from the backlight unit through the panel, and 3D FPR (film-type patterned retarder) film, which enables three-dimensional viewing.

Energy solutions

LG Chem completed development and began mass production of Korea’s first lithium-ion batteries back in 1999. At the end of 2011, LG Chem was the world’s third-largest maker with an annual production capacity of 1 billion cells. It is also a supplier of automotive battery for electric vehicles, such as the Ford Focus, Chevrolet Volt and Renault ZOE.

LG Chem Michigan is a wholly owned subsidiary of LG Chem based in Holland, Michigan which operates a plant to manufacture advanced battery cells for electric vehicles in Holland, Michigan. The US$303 million Holland plant received 50% of its funding from U.S. Department of Energy matching stimulus funds, and started manufacturing battery systems in 2013. The plant can produce enough cells per year to build between 50,000 and 200,000 battery packs for electric cars and hybrids such as the Chevrolet Volt by General Motors, the Ford Focus Electric, and upcoming plug-in electric vehicles from other carmakers. Its research and development arm, called LG Chem Power, is based in nearby Troy, Michigan. LG Chem Power and LG Chem Michigan were originally one company called Compact Power, Inc.

Both the Chevrolet Volt and the Ford Focus Electric initially used cells manufactured in Korea by parent LG Chem and then later switched to cells produced in LG Chem Michigan’s Holland plant once it opened.

In September 2020, LG Chem unveiled its plan to publicly list its energy division under the name of LG Energy Solution by December.

Tesla

Is an American electric vehicle and clean energy company based in AustinTexasUnited States. Tesla designs and manufactures electric cars, battery energy storage from home to grid-scale, solar panels and solar roof tiles, and related products and services. Tesla is one of the world’s most valuable companies and remains the most valuable automaker in the world with a market cap of nearly $1 trillion. The company had the most sales of battery electric vehicles and plug-in electric vehicles, capturing 16% of the plug-in market (which includes plug-in hybrids) and 23% of the battery-electric (purely electric) market. Through its subsidiary Tesla Energy, the company develops and is a major installer of photovoltaic systems in the United States. Tesla Energy is also one of the largest global suppliers of battery energy storage systems, with 3 gigawatt-hours (GWh) installed in 2020.

Founded in July 2003 by Martin Eberhard and Marc Tarpenning as Tesla Motors, the company’s name is a tribute to inventor and electrical engineer Nikola Tesla. In February 2004, via a US$6.5 million investment, X.com co-founder Elon Musk became the largest shareholder of the company and its chairman. He has served as CEO since 2008. According to Musk, the purpose of Tesla is to help expedite the move to sustainable transport and energy, obtained through electric vehicles and solar power. Tesla began production of its first car model, the Roadster, in 2009. This was followed by the Tesla Model S sedan in 2012, the Tesla Model X SUV in 2015, the Tesla Model 3 sedan in 2017, and the Tesla Model Y crossover in 2020. The Tesla Model 3 is the all-time best-selling plug-in electric car worldwide, and, in June 2021, became the first electric car to sell 1 million units globally. Tesla’s global vehicle sales were 499,550 units in 2020, a 35.8% increase over the previous year. In October 2021, Tesla’s market capitalization reached US$1 trillion, the sixth company to do so in U.S. history.

Tesla has been the subject of several lawsuits and controversies arising from statements and acts of CEO Elon Musk and from allegations of creative accounting, whistleblower retaliation, worker rights violations, and unresolved and dangerous technical problems with their products. In September 2021, the National Highway Traffic Safety Administration (NHTSA) ordered Tesla to submit data pertaining to all sold US vehicles equipped with Autopilot.

Tesla Energy products

Tesla subsidiary Tesla Energy develops, builds, sells and installs solar energy generation systems and battery energy storage products (as well as related products and services) to residential, commercial and industrial customers.

The subsidiary was created by the merger of Tesla’s existing battery energy storage products division with SolarCity, a solar energy company that Tesla acquired in 2016.

Tesla Energy’s generation products include solar panels (built by other companies for Tesla), the Tesla Solar Roof (a solar shingle system) and the Tesla Solar Inverter. Other products include the Powerwall (a home energy storage device) and the Powerpack and Megapack, which are large-scale energy storage systems.

In 2020, the company deployed solar energy systems capable of generating 205 megawatts (ranked third in U.S. residential solar installations) and deployed 3 gigawatt-hours of battery energy storage products.

Tesla Energy Software

Tesla has developed a software ecosystem to support its energy hardware products. Autobidder, Powerhub, Opticaster, Microgrid Controller and Virtual Machine Mode are the products that Tesla offers.

Solaredge

SolarEdge Technologies, Inc. is an Israel-headquartered provider of power optimizersolar inverter and monitoring systems for photovoltaic arrays. These products aim to increase energy output through module-level Maximum Power Point Tracking (MPPT). Established in 2006, the company has offices in the United States, Germany, Italy, Japan, and Israel. It is incorporated in Delaware.

History

SolarEdge was established in 2006 by Guy Sella, first CEO and Chairman, Lior Handelsman, VP of Product Strategy & Business Development, Yoav Galin, VP of R&D, Meir Adest, VP of Core Technologies and Amir Fishelov, Chief Software Architect.

The company is venture capital backed and investors include GE Energy Financial Services, Norwest Venture PartnersLightspeed Venture Partners, ORR Partners, Genesis Partners, Walden International, Vertex Ventures Israel, JP Asia Capital and Opus Capital Ventures.

At the end of 2009, the company started mass production of its products by electronic manufacturing services provider Flextronics International Ltd.

In 2010, the company shipped an estimated 250,000 power optimizers and 12,000 inverters – amounting to a total generation of 50 megawatts and 70% of the power optimizers market.

In March 2015, SolarEdge had an initial public offering of 7,000,000 shares of its common stock at a price to the public of $18.00 per share, raising $126 million. The shares began trading on the NASDAQ Global Select Market under the ticker symbol “SEDG.” Goldman Sachs and Deutsche Bank acted as joint book-running managers for the offering.

Following a battle with cancer, founder Guy Sella died in 2019. Former Global Sales VP Zvi Lando, was appointed acting CEO.

Tesla SolarEdge Partnership

SolarEdge was established in 2006 by Guy Sella, first CEO and Chairman, Lior Handelsman, VP of Product Strategy & Business Development, Yoav Galin, VP of R&D, Meir Adest, VP of Core Technologies and Amir Fishelov, Chief Software Architect.

The company is venture capital backed and investors include GE Energy Financial Services, Norwest Venture PartnersLightspeed Venture Partners, ORR Partners, Genesis Partners, Walden International, Vertex Ventures Israel, JP Asia Capital and Opus Capital Ventures.

At the end of 2009, the company started mass production of its products by electronic manufacturing services provider Flextronics International Ltd.

In 2010, the company shipped an estimated 250,000 power optimizers and 12,000 inverters – amounting to a total generation of 50 megawatts and 70% of the power optimizers market.

In March 2015, SolarEdge had an initial public offering of 7,000,000 shares of its common stock at a price to the public of $18.00 per share, raising $126 million. The shares began trading on the NASDAQ Global Select Market under the ticker symbol “SEDG.” Goldman Sachs and Deutsche Bank acted as joint book-running managers for the offering.

Following a battle with cancer, founder Guy Sella died in 2019. Former Global Sales VP Zvi Lando, was appointed acting CEO.

Schneider Electric Partnership

In October 2020, SolarEdge has partnered with Schneider Electric. This alliance is planned to provide a cohesive electricity environment for installers and device owners, while also accelerating solar installation experience across the region.

Introduction of Square D Energy Center

The Square D Energy Center is operated by Schneider Electric’s Wiser technology, along with Solaredge’s Energy Hub Inverter with Prism Technology, for home automation and electronic energy storage.

Background

Traditional PV systems are typically characterized by a centralized inverter or string inverter architecture*. In this topology the inverter performs MPPT for large quantities of solar panels as a whole. Since the solar panels are connected in series to form strings, the same current must flow through all the modules, so the solar inverter continuously adjusts the electric current in the system to find the average optimal working point of all the modules. As a result, potential power may be lost whenever a mismatch exists between modules.

*Panel mismatch is unavoidable in many cases, due to panel manufacturing tolerance, partial shading, uneven soiling, or uneven tilt angle. In addition, power may also be lost due to slow tracking of dynamic weather conditions caused by moving clouds, and on extremely hot or cold days when the system DC voltage may exceed the inverter’s permissible input voltage range*. These factors cause small losses in yearly yields, but they are present. Other drawbacks of traditional PV systems include:

  • System design is constrained by the need to match all strings’ length and orientation
  • Monitoring visibility and fault detection are limited to the inverter (or in some cases, to the string level)
  • High DC voltage is present as long as the sun is up, posing a possible risk of electrocution to installers, maintenance personnel and firefighters*

These drawbacks, however, can be mitigated by newer string inverters with advanced electronics and features such as dual, shade-tolerant and improved MPPT.

Acquisitions

In October 2018, SolarEdge announced agreements to acquire a major stake in Kokam, a South Korean provider of Lithium-ion battery cells, batteries and energy storage solutions.

In January 2019 SolarEdge announced the acquisition of a majority stake in SMRE – an italian EV/Powertrain manufacturer. SMRE has since been renamed to SOLAREDGE e-MOBILITY SpA.

Silfab Solar

Silfab Solar is a world-class manufacturer of solar panels, offering unparalleled performance and reliability for North American consumers. They have been recognized as one the largest module manufacturers in America with their process being specifically designed to meet our needs here at home!
As an organization that balances production between original equipment makers (OEM) partners like themselves; they make sure there’s always enough supply on hand so you can get your hands dirty installing or maintaining these beautiful energy generating devices today – without worry about running out anytime soon

Details

  • Company website: https://www.silfabsolar.com
  • Made in: Canada and North America
  • Product lines: Solar Panels
  • Warranty:  30 Year Linear Performance and 25 Year Limited Product Warranty
  • Company Type: Privately Held as Silfab Solar, Inc.
  • Year Founded: 2010 with Headquarters in Mississauga, Ontario (Canada)